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LE'JTER TO THE EDITOR 

General self-dual spin models in two dimensions 

Francisco C Alcaraz? 
Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA 

Received 7 April 1982 

Abstract. We show that a very large class of two-dimensional Z ( N )  spin models with 
multi-spin interactions is self-dual. By using Griffiths-like inequalities on correlation 
functions we expect that all these theories, for N sufficiently large, will show an intermediate 
disordered massless phase (infinite correlation length) between massive high- and low- 
temperature phases. 

Several spin systems with Z(N) symmetry in two dimensions (Elitzur et a1 1979, Cardy 
1980, Alcaraz and Koberle 1980, 1981, Alcaraz and Jacobs 1982a,b), three 
dimensions (Amit et a1 1981, Alcaraz et a1 1982 b, c) and Z(N) gauge invariant models 
in four dimensions have the same structure under duality transformation (Savit 1980 
and references therein), with the Villain as well as the Potts version of those models 
being self-dual for all N. This self-duality property (in the Villain version) enables 
one to locate the critical temperature (Kramers and Wannier 1941) if a uniqueness 
assumption for the phase transition holds. By using Griffiths-like correlation 
inequalities and the fact that the U(l)  (limit when N -* CO) model has a phase transition 
at non-zero temperature, it is possible to show that for N sufficiently large those 
theories show two phase transitions with the intermediate phase being massless (infinite 
correlation length) (Elitzur et a1 1979, Ukawa et a1 1980, Amit et a1 1981, Alcaraz 
et a1 1982a, c). Therefore it is interesting to obtain a general model that possesses 
the same duality structure as the above models. We present in this letter a large class 
of two-dimensional spin models that exhibit this self -duality structure. 

We consider a square lattice and define a Z(N) spin variable S ( r ) =  
exp[i(2?r/N)q(r)], (q ( r )  = 0, 1, . . . , N - 1) at each lattice point, periodic boundary 
conditions being assumed. We shall consider first, for simplicity, the model in which 
there is an m-spin interaction in the x direction and an n-spin interaction in the y 
direction (even more general models will be discussed later). For a Hamiltonian (or 
action) to possess the Z(N) symmetry it must be a function of the cluster variables 

n-1 277n-1 2?r 
S,'(r)= n ~ ( r + j l ) = e x p i -  1 q(r+jl)=expi-q:(r). 

l = O  N roo N 

t Supported in part by CNpq. Permanent address: Depto de Fisica, Universidade Federal de SLo Carlos, 
CP 616, 13560 Slo Carlos, SP, Brasil. 

0305-4470/82/090495 + 06$02.00 @ 1982 The Institute of Physics L495 



L496 Letter to the Editor 

We can then define the general Hamiltonian (Cardy 1980, Alcaraz and Koberle 
1980,1981) 

[N/2] being the integer part of N/2. It is interesting to observe that this model has 
non-local Z(N) symmetry involving a fraction 4/nm of the total number of spins, 
producing then a N(fl-l)(m-l) -fold degeneracy of the ground state. The Potts version 
(Hamiltonian analogue to the Potts model) of the above model corresponds to 
JI  = 52 = . . . = i ( l +  ( - ) N ) J ~ ~ , 2 ~  and the clock version corresponds to Ju = JSu,l. The 
case m = n = 2 reduces to the general self-dual Z(N) two-body spin model (Cardy 
1980, Alcaraz and Koberle 1980, 1981). The Potts version has been shown to be 
self-dual (Turban and Debierre 1982, Turban 1982). We will show that the general 
model (2) has the same duality structure already known for the two-body interaction 
case. 

For simplicity we will make the duality transformation in the periodic Gaussian 
or Villain form of the clock model, and the duality for the general model follows in 
a straightforward fashion. By standard techniques (Jos6 et a1 1977, Savit 1980) the 
Villain approximation is introduced by defining a two-component integer field J ( r )  
(J"(r), J'(r))  ( -a<J'(r)<00)  at each lattice point. The partition function is then 
given by 

where the first and second sums are the trace over the J ( r )  and 4(r) field and the 
sum in the exponent extends over all lattice points. For brevity of notation we have 
defined 

4c(r) = (sc"(r),4cy(r)). (4) 

By use of the Poisson summation formulae we can write 

( 5 )  

where Z(r)=(l'(r), l'(r)) is a two-component integer field defined on sites. It is 
convenient to write the integer field I (r )  as a sum of two other fields Z(r) = Np(r) + v(r )  
with -cm s p i ( r )  d 00, 0 d v i ( r )  s N - 1, (i = 1,2), so that the partition function takes 
the form 

where C(p)  is a harmless constant. In order to perform the q(r)-summations we must 
isolate the 4(r)  variables (integrate by parts); this may be done by writing 

C v(r)-qc(r) = C q(r)v,* ( r )  
r r 

in which we have introduced the scalar integer (mod N) field 
m-1 fl-1 

f = O  I = O  
vZ(r )=  1 v X ( r - I T ) +  c v y r - l f )  (mod N )  

(7) 
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so that by inserting equation (7) in equation (6) and performing the q(r)-summations 
we get 

1 z=cw f c e x P - ~ ~ I N P ( r ) + v ( r ) 1 2 ~ N ~ k [ v , * ( r ) l  (9) 
t d r ) = - 4  {v(r)=Ol 

where St is a Kronecker delta function (since v,* (r)  is defined modulo N). In order 
to satisfy the Sk-requirements, that is v,* (r) = 0 for all r, we define in the dual lattice 
(the square lattice whose lattice points are given by f = r +i(i+,z?), and with periodic 
boundary conditions) the dual field 0 d gk) d N - 1. We can verify easily that if 

m-1 

150 
vY(r)  = q(r -lT) =if& -(m -1)f] (mod NI, (loa) 

v*(r )  = - gk - l,f) = -gE[,r - (n - 1)jl (mod N ) ,  (106) 
n-1 

I=O 

the Sk-requirements in equation (9) are satisfied. Conversely, given a v ( r )  configuration 
that satisfies the &-requirements, we can find the corresponding dual field configuration 

m 

100 
+(r) = [ vY(r  - mli) - vY(r  - ml - l)i]. (11) 

Of course this infinite string has a sort of gauge symmetry in which we can add U,* (r) 
at any point r, modifying the string path. Clearly there are many configurations of 
tk) variables (related by Z ( N )  symmetry) which produce the same v(r )  configuration; 
however, this will generate a uniform overcounting, giving a harmless overall infinite 
numerical factor (Savit 1980). Finally, making the convenient redefinitions 

6 jY( r - (n  - 1),z3=pX(4, 6"k- (m - I)?) = -p'(r), (1% b )  
the partition function takes the form 

where D ( p )  is a harmless constant and $ ,N2/[P(27r)z]. Therefore, the Villain model 
is self-dual for all N. If the Villain model has a unique phase transition it must occur 
at the self-dual point p* = N/2w. 

Performing the duality transformation for the general model defined by 
equation (2), we obtain exactly the same duality structure known for the general Z(N),  
m = n = 2 spin model (Cardy 1980, Alcaraz and Koberle 1980, 1981); for example, 
all the Potts models (.TI = J2 = . . . = J c N , ~ ~  [1+ ( -)N]/2) are self-dual, and the vector 
models (Jp = J1SaI1) are self-dual when N 6 4, etc. 

We may prove this duality structure for even more general spin systems than those 
given by the Hamiltonian (2). Following the general work of Wegner (1971) and 
Savit (1982), what is fundamental for self-duality is to have the existence of one field 
(variable) and two types of potentials for each lattice point. We can therefore define 
general clusters qc = (qg, qE) (not necessarily straight clusters), and it is possible to 
find the dual clusters &(r) (see equation (10)) that solves the &-requirements (see 
equation (9)). The dual cluster gE"(4:) has the same form, rotated by T, as the original 
cluster q:(qE); in figure 1 we show two examples of clusters with their duals. In general 
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(01 

U 
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Figure 1. The circles (squares) are the original (dual) lattice points. The sum of q ( r )  
(dk)) variables that lie in the straight and wavy segments in the original (dual) lattice 
corresponds to the cluster variables q: and qf (4: and 4:) respectively. 

these arbitrary clusters will produce self-dual models with somewhat complicated 
symmetries. There is however a large family of clusters (in figure2 we show some 
examples) whose Hamiltonians exhibit a non-local Z ( N )  symmetry of the same nature 
as that of straight clusters. Let us stress that the clusters given by figure 2(c)  produce 
the triangular Z ( N )  model with three-body interaction, which is already known to be 
self-dual (Alcaraz and Jacobs 1982a, b). We may even consider models in which the 
clusters associated with each point are not equal. That is, if we divide the square 

m 

(01 

I P 

Figure 2. Some examples of clusters whose Hamil- 
tonian has non-local Z ( N )  symmetry. The straight 
(wavy) segments correspond to the cluster variable 
q: (4;). (c) is the particulai case of ( b )  in which 
m = 2 = n  and l = O .  
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lattice into 1 square sublattices it is possible to define clusters attached to each sublattice 
in a different way, but preserving the self-dual structure. One example is the case 
when we have two sublattices and the clusters are shown in figure 3; it is easy to verify 
that those clusters generate the Z(N)-triplet Union-Jack model which is known to be 
self-dual (Alcaraz and Cardy 1982). 

Figure 3. The circles and squares are lattice points of different sublattices. The straight 
and wavy segments correspond to the cluster variables attached to different sublattices. 

By standard techniques (Elitzur et a1 1979, Amit et al 1981, Alcazar etal 1982a, c) 
it is possible to prove Griffiths-like inequalities on correlation functions for those 
models (details will be presented elsewhere). Defining the M-spin (order variable) 
correlation function 

and the M-point correlation function for the dual variable 

and by using the Villain version of the theory it is possible to prove the inequalities 

CS(r1,.  . . ,rm)sC:ki,. . . ,rm), (16a, b) 
Therefore by using standard arguments (Elitzur et a1 1979) these inequalities imply 
the existence of an intermediate phase (with the full symmetry of the Hamiltonian) 
between the low- and high-temperature phases for N sufficiently large if the U(1) 
Villain theory has a phase transition at finite temperature. By studying the Coulomb 
gas representation (details will be reported elsewhere) of the Villain formulation of 
these theories with non-local symmetry U(1) (see for example figure2), we verify 
that they may be represented by a gas of complex charges interacting logarithmically, 
and hence using the Kosterlitz and Thouless (1973) arguments we expect that these 
U(l) theories should have a phase transition at a finite inverse temperature p i  (that 
would depend on the type of cluster), with the low-temperature phase disordered 
(Mermin and Wagner 1966) and massless (infinite correlation length). Therefore we 
conclude this letter by stating that all of these large clan of models with non-local 
Z ( N )  symmetry studied here are expected, in the Villain formulation, to have an 
intermediate massless phase for N > N,  = 2 ~ 0 ;  ; furthermore the general Hamiltonian 
defined by equation (2) will have (assuming the continuity of the critical surface in 
the J, parameter space) massless phases for N > N,. 

DS(r1,. . . , rm)sD:kl,. . . ,,rm). 

We are grateful to J Cardy, L Jacobs, S Ostlund and R Savit for useful related dis- 
cussions. This research was supported in part by the NSF grant PHY77-27084. 
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